Practice Set 1.5

Use the choices below to fill in each blank.

product rule quotient rule

negative exponent rule zero exponent rule

power rule additive Inverse

- 1. $a^m \cdot a^n = a^{m+n}$ is called the ______.
- 2. $a^{-m} = \frac{1}{a^m}$ is called the ______.
- 3. $\left(a^{m}\right)^{n}=a^{m\cdot n}$ is called the ______.
- 4. $a^0 = 1$ is called the

Simplify each expression. Write the answer without negative exponents. Assume that all bases represented by variables are nonzero.

5. $4^2 \cdot 4^1$

 $6. \qquad x^2 \cdot x^5$

5.____

7. $\frac{3^5}{3^2}$

 $8. \qquad \frac{x^7}{x^4}$

7.____

9. $7x^0$

10. $-7x^0$

9._____

8.____

11. $(-7x)^0$

12. $-(-7x)^0$

11.____

10.____

12._____

13. $\left(\frac{2}{3}\right)^{-2}$

14. $-(4)^{-2}$

13.____

14._____

15. $6x^{-2}y^{-3}z$

 $16. \quad \frac{14xy^2z^{-3}}{7x^{-3}y^{-1}z^4}$

- 15._____
- 16.

Practice Set 1.5

Simplify each expression. Write the answer without negative exponents. Assume that all bases represented by variables are nonzero.

$$17. \quad \left(\frac{5}{x^3}\right)^3$$

18.
$$\left(-3x^2y^{-3}\right)^{-2}$$

20.
$$\left(\frac{2x^{-1}y^3z^{-2}}{6x^{-2}y^{-3}z^4} \right)^{-2}$$

21.
$$\frac{\left(3x^{-3}y^2\right)^{-2}}{\left(x^{-4}y^{-2}\right)^{-3}}$$

22.
$$\frac{\left(2m^{-1}n^3p^{-2}\right)^{-1}}{\left(3mn^{-2}p^4\right)^2}$$

$$23. \quad 3 \cdot 4^{-2} + 6 \cdot 8^{-1}$$

24.
$$4^{-1} + 5^{-1}$$

Determine what exponents must be placed in the [] to make each expression true.

25.
$$\left(\frac{x^2y^{-3}}{x^{[]}y^2}\right)^2 = \frac{x^{12}}{y^{10}}$$

26.
$$\left(\frac{x^{[]}y^3z^{-1}}{x^4y^{-2}z^{-3}} \right)^{-1} = \frac{x^2}{y^5z^2}$$

Challenge

$$27. \quad \left(\frac{x^{\frac{1}{2}}y^3}{x^{-1}y^{\frac{3}{2}}}\right)^{\frac{1}{2}}$$