Practice Set 9.1

Use the choices to fill in each blank.

composite product

vertical horizontal interchange one-to-one

domain range

- 1. To determine if a relation is a function use the _____ line test.
- To determine if a function is one-to-one use the _____ line test. 2.
- 3. $(f \cdot g)(x)$ is called the _____ of functions f and g.
- $(f \circ g)(x)$ is called the function of f with g. 4.
- Only functions have inverse functions. 5.
- The domain of a one-to-one function becomes the ______ of its inverse function, and the 6. of its inverse function. range of the one-to-one function becomes the

For each pair of functions, find a) $(f \circ g)(x)$, b) $(f \circ g)(4)$, c) $(g \circ f)(x)$, d) $(g \circ f)(4)$.

7.
$$f(x) = x^2 + 1$$
, $g(x) = x - 1$

8.
$$f(x) = x^2 + 2x + 1$$
,
 $g(x) = x - 2$

$$g(x) - x - 1$$
 $g(x) - x - 2$

9.
$$f(x) = 3x + 4$$

 $g(x) = \frac{1}{x}$

10.
$$f(x) = x^2 + 5$$

 $g(x) = \sqrt{x+1}, x \ge -1$

10.a) b) c) ____d)____

Determine whether each function is one-to-one.

11.

12.

13.
$$y = (x-1)^2 + 3$$

14.
$$y = |x + 1|$$

15.
$$y = \sqrt{x}$$

16.
$$y = x^3$$

17.
$$y = \pm \sqrt{x}$$

18.
$$v = \sqrt[3]{x}$$

Practice Set 9.1

For each function, if it is one-to-one, find its inverse.

19.
$$f(x) = x + 1$$

20.
$$f(x) = 3x + 4$$

21.
$$f(x) = x^2 + 2x + 1$$

22.
$$f(x) = x^3 + 1$$

23.
$$f(x) = \sqrt[3]{x+1}$$

24.
$$f(x) = \frac{2}{x}$$

For each one-to-one function, find $f^{-1}(x)$ and graph f(x) and $f^{-1}(x)$ on the same axes.

25.
$$f(x) = -2x + 5$$

26.
$$f(x) = \sqrt[3]{x}$$

25.
$$f^{-1}(x) =$$

26.
$$f^{-1}(x) =$$

For each pair of inverse functions, show that $(f \circ f^{-1})(x) = x$ and $(f^{-1} \circ f)(x) = x$.

27.
$$f(x) = 3x + 2$$

$$f^{-1}(x) = \frac{1}{3}x - \frac{2}{3}$$

28.
$$f(x) = x^2 - 1, x \ge 0$$

$$f(x) = x^2 - 1, x \ge 0$$

 $f^{-1}(x) = \sqrt{x+1}$

27.
$$(f \circ f^{-1})(x) =$$

$$(f^{-1} \circ f)(x) = \underline{\hspace{1cm}}$$

28.
$$(f \circ f^{-1})(x) =$$

$$(f^{-1} \circ f)(x) = \underline{\hspace{1cm}}$$

Problem Solving

- The function f(x) = 4x converts gallons, x, into quarts. Find the inverse function and explain what x and $f^{-1}(x)$ represent.
- **29.** $f^{-1}(x) =$
- The function f(x) = 16x converts pounds, x, into ounces. Find the inverse function and explain what x and $f^{-1}(x)$ represent.
- **30.** $f^{-1}(x) =$

Challenge

- 31. When a pebble is thrown into a pond, the circle formed by the pebble hitting the water expands with time. The area of the expanding circle may be found by the formula $A = \pi r^2$. The radius, r in feet, of a circle is a function of time, t seconds. Suppose that the function is r(t) = 2t. Find the area of the circle at 2 seconds.